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Abstract. The self-avoiding walk approximation is used to give upper bounds to the 
zero-field spin-pair correlation function, zero-field susceptibilities and the spontaneous 
magnetisation for the systems of the random-bond Ising model of general spin S and the 
random-bond n-vector model, where the exchange integrals are assumed to be random 
variables. Using the obtained bounds, we find asufficient condition for disappearance of the 
long-range orders. It turns out that the condition is stronger for some cases than the one 
obtained in a previous paper by the present authors. The present one applies to some cases 
for which the preceding one does not. 

1. Introduction 

In a previous paper (Horiguchi and Morita 1981, to be referred to as I), we obtained 
upper bounds to the spin correlation functions in the thermodynamic limit of the zero 
external field limit for the random-bond king model of general spin S and for the 
random-bond n -vector model, in both of which the exchange integrals are quenched 
random variables and take on J (J > 0), 0 and -J with probabilities p, r and 1 - p  - r, 
respectively. By using the upper bounds obtained to the spontaneous magnetisation (ar 
spontaneous sublattice magnetisation), we found the lower (or upper) bound to the 
critical concentration of the ferromagnetic bonds for disappearance of the ferro- 
magnetic (or antiferromagnetic) state. These results of paper I were extended to the 
systems with exchange integrals whose probability distributions are continuous. We 
then found a more general form of the sufficient condition for disappearance of the 
long-range orders (Horiguchi and Morita 1982, to be referred to as 11). However, in 
paper 11, we made a restriction to the probability distributions Pii(Jji) of the exchange 
integrals Jij, that is, Pii(Jij) is zero whenever Pii(-Jij) is zero. Because of this restriction, 
we could not discuss the systems with the exchange integrals whose probability 
distribution is, for example, the rectangular distribution in the interval [-a, b] except 
when a = b. The random-bond Ising model with such a distribution of Jii, with a # b, 
was investigated as a model of the spin glass by Katsura (1977) in the Bethe approxima- 
tion. The primary aim of this paper is to remove this restriction imposed in paper I1 in 
order to cover such a case. 

Fisher and Sykes (1959) and Fisher (1967) showed that the self-avoiding walk 
approximation gives upper bounds to the zero-field spin-pair correlation functions, to 
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the zero-field susceptibility and to the critical temperature for the ferromagnetic Ising 
model. For the random-bond and random-site ferromagnetic Ising model, Morita 
(1979) showed that these upper bounds are expressed in terms of the corresponding 
quantities for the regular Ising model. It was also noted that these give upper bounds 
for the random-bond Ising model in which the exchange integrals take on negative as 
well as positive values. 

In the present paper, we use these facts in order to remove the restriction imposed in 
paper I1 on the probability distributions of Jib We consider the systems of the 
random-bond Ising model of general spin S and of the random-bond n -vector model. 
First, we obtain upper bounds to the zero-field spin-pair correlation functions and to the 
zero-field susceptibilities in § 2. We obtain upper bounds to the spontaneous long- 
range order parameters and a sufficient condition for disappearance of the long-range 
orders in 9 3. In § 4, the condition is discussed for several types of the probability 
distribution. It turns out that the condition is stronger than the one in paper I1 for some 
cases, even when the latter applies. Concluding remarks are given in Q 5 .  

2. Upper bounds to zero-field spin-pair correlation functions and to zero-field 
susceptibilities 

First we consider the system of the random-bond Ising model of general spin S under 
zero external field on a finite set of N lattice sites 

(2.1) 

where s, takes on the values -S, -S  + 1, . . . , S. J,, are mutually independent, quenched 
random variables and their probability distributions are denoted by p,, (Jt ,) .  We are 
concerned with the configurational average of the spin-pair correlation functions 
< ( S ~ S , ) ~ , ? ) ~  for k # 1, where 

HL0) = - c J,,s,s, 
( 1 , )  

<sks , )g ’=  Tr SkSl  exp(-&?)/Tr exp(-PHg’). (2.2) 

Here p = l /kBT as usual and kg is the Boltzmann constant. The angular brackets with 
a suffix c denote the configurational average of a function of {J,,} 

where 

(2.3) 

(2.4) 
(ij) 

We denote the set of Jij for which &Jii) +F(-Ji j )  is non-zero by $ij and the set of Jij 
for which $(Jf j )  +F(-Jii)  has a delta-function singularity by 9:. We take a function 
S(Jii) which is positive and integrable in the set$i, and has a delta-function singularity at 
Jij belonging to the set J:,  and assume that it satisfies 

j f m j )  d J i j  = Nt c C o .  

If $ij is of finite measure and $$ is a finite set, [ (J i j )  is chosen to be identically unity for 
Jii E $ij and has a delta-function singularity with amplitude unity at Jii belonging to the 



Upper bounds for  random-bond Ising model 955 

set $:, and zero otherwise. For a small positive number E ,  we introduce a function 
g!;) (Jij)  by 

We agree that the limiting procedure tending E to zero is taken before the thermo- 
dynamic limit. 

Introducing dichotomic variables {ai} each of which takes *l and performing the 
gauge transformation (Horiguchi 1981), we obtain 

where the superscripts {pJ"} and {Ij3'")JI} denote the sets ( p J y }  and {[fl{f)Jijl}, respec- 
tively, and J y  is the maximum value of lJijl for Jij €lij U$$. When JY does not exist, 
we have S2 in place of (sksI)KM' in (2.11). It was shown by Fisher (1967) that the 
correlation function ( a k a l ) & b  for the set {y i j }  of the fixed values yij > 0 is bounded above 
by the generating function Ckl({yij > 0}, A) for the self-avoiding walks from site k to 1 on 
A, which is expressed as follows (Morita 1979) 

(2.12) 

where the summation runs over all self-avoiding walks from site k to I, and the product 
is taken over all the bonds (i, j) on the route of the walk T(k, I). Then we have 

(2.13) 
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where 

(2.14) 

We now restrict ourselves to the system with only the nearest-neighbour exchange 
integrals whose probability distribution Fij(Jij) are equal to the same distribution P(Ji j )  
for all the nearest neighbours ( i ,  j ) .  Then we have in the limit as N + CO 

where 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

Q,(k, I )  is the total number of the self-avoiding walks of n steps from site k to 1 (Fisher 
1967, Morita 1979). For the zero-field susceptibility defined by 

we have 

(2.19) 

(2.20) 

where 

(2.22) 

Here cn is the total number of self-avoiding walks of n steps, startingfrom a site far from 
the surface (Fisher 1967, Morita 1979). 

We assumed that the phase transitions between the paramagnetic phase and the 
ordered phases and between the spin-glass phase and the ordered phases are second- 
order transitions and that the zero-field susceptibility diverges at these transition points 
from the above. Here we designate the spin-glass phase the one with the zero 
long-range order parameter and the non-zero Edwards-Anderson order parameter 
(Edwards and Anderson 1975). Under this postulation, we have a sufficient condition 
of F(Jij) for disappearance of the ordered states as follows 

(2.23) 
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where f~ is the Curie temperature calculated by the self-avoiding walk approximation 
for the Ising model of spin f 1 with the nearest-neighbour exchange integral J > 0. 

The same discussions are also applied to the system of the random-bond n-vector 
model under the zero external field on a finite set A of N lattice sites. The 
Hamiltonian of the system is given by (Stanley 1974) 

(2.24) 

where si is the n-dimensional classical spin of unit magnitude for the site i: 

\Si1 = 1. (2.25) 

Jij are the exchange integrals for the pair of sites i and j and are mutually independent, 
quenched random variables whose probability distributions are denoted by pij(.lij). For 
the configurational average of the correlation function of spins s z  and sf for k # 1 
defined by 

(2.26) 

(1) (2)  (n) & = ( s i  ,si , . . . , s i  ) 

a P { P J }  
((sks! )N,o L= ( ~ r  Gsf exp(-~~' ,O') /Tr  exp(-PHIP))), 

we have instead of (2.13) 

(2.27) 

Restricting ourselves to the system with only nearest-neighbour exchange integrals, 
whose probability distribution is denoted by P(Jii) ,  we have 

(2.28) a P t W  lim I ( ( s ~ s I  )N,o  >I s f ( k ,  1;  (w>, ) .  
N-m 

For the zero-field susceptibility defined by 

(2.29) 

we have 

x a P ( o ) ~ P g ( ( w ) c ) .  (2.30) 

Here ( w ) c , f ( k ,  I; (w) , )  and g ( ( w ) J  are given by (2.17), (2.18) and (2.22), respectively. 
The same condition (2.23) is obtained for disappearance of the ordered states under the 
above postulation. 

3. Upper bound to the spontaneous magnetisation 

We consider the system of the random-bond Ising model of general spin S under the 
non-zero external field. The Hamiltonian is given by 

Hs = H g )  - h pis i .  (3.1) 
1 

HF) is given by (2. l) ,  h is the external field and f i j  is the magnetic moment of the spin on 
the site j .  We define the thermodynamic limit for the absolute value of the configura- 
tional average of the canonical average of the spin sk on the site k as follows 
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Superscripts { p }  represent the set {p i }  of pi, and Bo denotes the boundary condition that 
the boundary spins are not coupled with the outer system even if it exists. We consider a 
subset A I  of A and denote the number of the total sites of AI by N I .  It is assumed that .Al 
contains the site i and N1 is so large that we make N1 tend to infinity after making N 
infinity. 

We consider an auxiliary Hamiltonian 

We could show in paper I that 

Using cy!;’ and Pl,“’ defined by (2.6) and (2.7) instead of c y i j  and p i j  in paper 11, we show 
the following inequality by the same procedure as taken in paper I1 

(3.7) { P J ) (  1 {WY).(&i) iPJM) i irl} 
I((sk ) N,(h:&Bo)cl ( I ( u k )  Ni.h.BI I)c(sk )N,(h,dI,Bo 

where 

and 

P H I =  - P ~ ~ ’ J I J ~ l ~ t - @ & i  1 U , -  ~ ~ , “ J 1 p l .  (3.9) 
(11)  I ( 1 1 )  

W E  11 I € \ ,  I € Z , . J t 2 \ 2 ,  

Here @, 6 and C; are positive. Superscript {lpl} represents the set {Ip,j} of IplI. B I  
expresses the boundary condition that the spins which belong to A\Al and interact with 
a spin cl for i E A, are all plus one. 

By applying theorem 1 of Horiguchi and Morita (1979) to the first factor on the 
right-hand side of (3.7), we have 

(3.10) 

Taking the limit as N - * m  first and then h -* + O  on both sides of equation (3.10), we 
have 

I(”k)iP’)’ir))cl lim ( ( g k ) K , 6 J 3 1  (=” c ( s k  ) i P J M I . i l W i )  (3.11) 

for any N I  and i > O ,  where we took equation (3.6) into account. According to a 
theorem by Lebowitz and Martin-Lof (1972), we have 

i P J ) . i r }  < lim ( ( a k ) i l P ( e J J l ) , ( ’ ” )  W‘) {Irl) 
/ ( (Sk)N,(h ,O) ,Bo)c l .  N I ,  h,BI ) c ( s k  ) N,( h,Oj,Bo 9 

€‘CO 

(3.12) 
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for the set {yij} of the fixed values yii = IP!;’Jijl with an arbitrary E .  Thus we have 

(3.13) 

We now introduce a ghost spin go on a ghost site 0 in order to treat the external field as a 
part of the exchange integrals. We consider the Hamiltonian on A’ = A U {0} 

PHf = - /P:;)Jij\uicrj -E IPI2J io la iaO (3.14) 
(ij) i 

(3.15) 

where the right-hand side is the average of CkkCrO for the system described by the 
Hamiltonian (3.14). On the right-hand side of (3.151, {(/3(*)JI, Ip$)Jiol} represents 
the union of the sets {l@$)Jiil} and {lPk’Jiol}. We estimate the right-hand side in terms 
of the self-avoiding walk approximation. It we denote by 1 the site just before site 0 
on the route from site k to 0, we have 

(3.16) 

When we restrict ourselves to the system with only the nearest-neighbour exchange 
integrals, we have 

{IPi=)Jl}.(G) 
( g & ) N , h , B o  Ctanh(b@) c&t({lP~f)~ijl}; A). 

1#0 

(3.17) 

where (w), and g((w>,) are defined by (2.17) and (2.22), respectively. From (3.11), 
(3.13) and (3.17) we have 

(3.18) 

We define the long-range order parameter in the system with only nearest- 
neighbour exchange integrals by suitably choosing the signs of pi in {pi}  in (3.1) as 
follows: 

I((sk)‘5J)’‘p})cl < (&)“JM”{ lp ’ ’  lim tanh(b@)g(( w ),). 
L++O 

(3.19) 

From (3.18), we see that the long-range order parameter is zero as long as g((w),) is 
finite. In this way, we again find the sufficient condition (2.23) for disappearance of the 
long-range orders. This condition (2.23) is investigated in detail in the next section: 

The above arguments are also applied to the system of the random-bond n -vector 
model 

Hn=Hjo’ - h  cc py’s?) 
i f f  

where Hjo’ is given by (2.24). We obtain 

(3.20) 

(3.21) 

for the system with only nearest-neighbour exchange integrals. Superscript {M(~ ) }  
represents the set { p y ) }  of p?). Defining the long-range order parameter by choosing 
{p?)}  suitably, we also obtain the sufficient condition (2.23) for disappearance of the 
ordered states. 
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4. Disappearance of the long-range order 

A sufficient condition for the disappearance of the spontaneous long-range order is 
obtained in 0 3 in the following form 

F(Jij) -F(-Jjj) J 
P ( J ~ ~ )  + F(-J , )  tanh-' [ ( 1  (4.1) 

for the random-bond Ising model and for the random-bond n-vector model. FC here is 
the Curie temperature calculated in the self-avoiding walk approximation for the Ising 
model of spin *l with the nearest-neighbour exchange integral J > O ,  that is to say, 
tanh(J/kBTc) is equal to the inverse of the self-avoiding walk limit. Its value was given 
by Domb for several two- and three-dimensional lattices (Domb 1970). 

We investigate the condition (4.1) for several types of the probability distribution 
of Jij. 

4.1. Discrete distribution of three delta functions 

Our first example is the probability distribution expressed formally by 

F(J i j )  = p S ( J i j - J ) + r S ( J i j ) + 4 S ( J i j + J )  (4.2) 

where J > 0 and p + q + r = 1. Equation (4.1) is expressed as 

tanh-'[lp - 411 C J / k ~ f c .  (4.3) 

For r = 0, this equation is nothing other than the one obtained previously except that FC 
there was the exact Curie temperature (Horiguchi and Morita 1981,1982). In terms of 
the ratio x of the mean 7 and the standard deviation U, we have 

tanh-' [ I X K l -  r )  112] s J 
(1 + X 2 ) l 1 2  

4.2. Gaussian distribution 

Equation (4.1) is expressed as 

J 
tanh-' [ erf (#)I s 

(4.4) 

(4.5) 

where x = j/u, j is the mean and U is the standard deviation, erf(x) is the error function 
(Magnus et a1 1966). 

4.3. Rectangular distribution 

For F(Ji j )  given by 

we have 

where x =j/u, j= (CY +p)/2 and U = ( p  -a)/2J3. 

tanh- ' (Ix 1/43) S J/  kB Tc 

(4.6) 

(4.7) 
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4.4. Quadrangular distribution 

For P(J i j )  given by 

[Aj[ d b 

otherwise 
F(Jij) = 

we have 

(4.8) 

(4.9) 

1 2  4 2 6 1 / 2  w h e r e x = j / u , ~ = $ a b 3 a n d u = ( s b  -ija b ) . 

4.5. Lorentzian distribution 

Equation (4.1) is expressed as 

tanh-'[(2/~) tan-'Ixl]s J / k B f c  (4.10) 

where x = j/u, j is the median and U the width. 
The left-hand side of equation (4.3) with r = 0 and r = 0.5, and of equations (4.4), 

( 4 3 ,  (4.7), (4.9) and (4.10) are shown as functions of x in figure 1. For the case of the 
quadrangular distribution, there is no ordered state in the system on the hexagonal 

f " 
,.,'/G /'U I 

J l o  

Figure 1. The graph of tanh-'(w), given by (2.17) for several types of probability 
distribution of Jib The double chain curve is for the discrete distribution of three delta 
functions with r = O  and the chain curve for that with r = 0 . 5 .  The full curve is for the 
Gaussian distribution, the two-dash dotted curve for the rectangular distribution and the 
broken curve f?r the Lorentzian distribution. The dots are for the quadrangular dis- 
tribution. J/kBTc is shown by horizontal broken lines for the hexagonal, square, triangular, 
sc, BCC and FCC lattices. 



962 T Horiguchi and TMorita 

lattice. This situation also occurs for the case of the triangular distribution discussed in 
paper 11. The critical values of x are given in table 1. 

Table 1. The lower bound to the critical value of j / [ ~  for the ferromagnetic state. J is the 
mean and (+ is the standard deviation for the discrete distribution of the three delta functions 
(6, r = 0 and 6, r = O S ) ,  the Gaussian distribution (G), the quadrangular distribution (Q) and 
the rectangular distribution (R). f is the median and (+ is the width for the Lorentzian 
distribution (L). 

& r = O  6 , r = 0 . 5  

Hexagonal 0.6433 1.1882 
Square 0.4095 0.6349 
Triangular 0.2482 0.3624 
sc 0.2186 0.3168 
BCC 0.1550 0.2219 
FCC 0.1002 0.1423 

G Q 

0.7405 - 
0.4944 0.4867 
0.3066 0.2896 
0.2709 0.2545 
0.1932 0.1797 
0.1252 0.1158 

R L 

0.9371 1.1379 
0.6564 0.6773 
0.4172 0.3975 
0.3699 0.3486 
0.2653 0.2453 
0.1726 0.1578 

We investigate in detail the diluted Ising model with competing interactions. P(J,,)  

(4.11) 

I((sI)u"cj < ( ( S l ) ~ ~ ! l ! } . i ! ~ l ~ ) c ( u l ) ( l B , ' J ) . ( ~ )  (4.12) 

where PI  = ln[p/(l - p  - rj]/2J. ( ( ~ l ~ i p ' " ' ~ ' F ' ' ) c  represents the quantity ( (s , ) iBJ1"F" )c for 
the diluted ferromagnetic system in which P(J, , )  is non-zero for Jl, = J > 0 and 0 with 
probability 1 - r and r, respectively. In the preceding section, we showed that 

is given by (4.2). From theorem 2 in paper I, we have 
{@J) . {c . )  (BJ).{lc. ll(ur) i( 1 -r)I@, IJ}.c c 1 

I((s1) )cI c ( S I )  

(4.13) 

Thus, l((si)iP1t*{c.')cl is bounded above by the smallest quantity of the right-hand sides of 
equations(4.11)-(4.13). Theright-handsideof (4.11) iszerowhen IP1/(l - r ) c  l/kBTc 
where Tc is the exact Curie temperature of the king model of spin *1 with the 
nearest-neighbour exchange integral J > 0. The right-hand side of equation (4.12) is 
zero when r > ro where rc is the critical concentration of the percolation of the bond 
dilution (Shante and Kirkpatrick 1971). The right-hand side of equation (4.13) is zero 
when (4.3) is satisfied. These give lower and upper bounds to the critical concentrations 
of the ferromagnetic bonds for the ferromagnetic and the antiferromagnetic state, 
respectively. They are shown in figure 2 for the system on the hexagonal, square and sc 
lattices. 

5. Concluding remarks 

In terms of the self-avoiding walk approximation, we obtained upper bounds to the 
zero-field susceptibilities and spontaneous magnetisations for the systems of the 
random-bond king model of general spin S and the random-bond n -vector model. In 
these systems, the exchange integrals are assumed to be mutually independent, 
quenched random variables. Their probability distribution k J j i )  is either discrete or 
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Figure 2. The graph of lower and upper bounds to the critical concentrations of the 
ferromagnetic bonds for the ferromagnetic and the antiferromagnetic state, respectively. 
The thick full vertical lines are determined by (4.11), the broken curves by (4.12) and the 
other thick full curves by (4.13). For example, the system on the hexagonal lattice cannot 
have any long-range order except in the hatched regions. 

continuous. From the bounds, we found a sufficient condition for disappearance of the 
long-range order. 

In the previous paper (Horiguchi and Morita 1982), a restriction was imposed on 
&I,,) such that pi,(&,) is zero whenever ti,(-&,) is zero. In the present paper, we could 
partly remove this restriction, i.e., when Pij(Jii] is a continuous function and the measure 
of the set of Jii, in which fiii(-Jii) is zero and Pii(Jii) is non-zero, is finite, we could show 
that there is no spontaneous long-range order in the system as long as equation (4.1) is 
satisfied. 

It is also of interest to find a sufficient condition for disappearance of the long-range 
order for the systems in which pii(Jii> is non-zero for Ai = -JB < 0 and for Ai = J A  > 0 
with respective probabilities p and 1 - p ,  where Ja # JB. 
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